The Cayley-Dickson Construction in ACL2

نویسندگان

  • John R. Cowles
  • Ruben Gamboa
چکیده

The Cayley-Dickson Construction is a generalization of the familiar construction of the complex numbers from pairs of real numbers. The complex numbers can be viewed as two-dimensional vectors equipped with a multiplication. The construction can be used to construct, not only the two-dimensional Complex Numbers, but also the four-dimensional Quaternions and the eight-dimensional Octonions. Each of these vector spaces has a vector multiplication, v1 •v2, that satisfies: 1. Each nonzero vector, v, has a multiplicative inverse v−1. 2. For the Euclidean length of a vector |v|, |v1 •v2|= |v1| · |v2| Real numbers can also be viewed as (one-dimensional) vectors with the above two properties. ACL2(r) is used to explore this question: Given a vector space, equipped with a multiplication, satisfying the Euclidean length condition 2, given above. Make pairs of vectors into “new” vectors with a multiplication. When do the newly constructed vectors also satisfy condition 2?

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphism groups of real Cayley-Dickson loops

The Cayley-Dickson loop Cn is the multiplicative closure of basic elements of the algebra constructed by n applications of the Cayley-Dickson doubling process (the first few examples of such algebras are real numbers, complex numbers, quaternions, octonions, sedenions). We will discuss properties of the Cayley-Dickson loops, show that these loops are Hamiltonian and describe the structure of th...

متن کامل

Cayley-Dickson Construction

Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers , quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties. The notation and terminology used here have been introduced in the following We use the following convention: u, v, x, y, z, X, Y are sets and r, s ar...

متن کامل

Functions of Several Cayley-dickson Variables and Manifolds over Them

Functions of several octonion variables are investigated and integral representation theorems for them are proved. With the help of them solutions of the˜∂-equations are studied. More generally functions of several Cayley-Dickson variables are considered. Integral formulas of the Martinelli-Bochner, Leray, Koppelman type used in complex analysis here are proved in the new generalized form for f...

متن کامل

The Cayley-Dickson Construction in Homotopy Type Theory

We define in the setting of homotopy type theory an H-space structure on S3. Hence we obtain a description of the quaternionic Hopf fibration S3 ↪→ S7 S4, using only homotopy invariant tools.

متن کامل

Constructing zero divisors in the higher dimensional Cayley-Dickson algebras

In this paper we give methods to construct zero divisors in the Cayley–Dickson algebras An=R 2 for n larger than 4. Also we relate the set of zero divisors with suitable Stiefel manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017